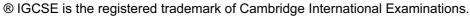
CAMBRIDGE INTERNATIONAL EXAMINATIONS

Cambridge International General Certificate of Secondary Education

MARK SCHEME for the October/November 2014 series

0654 CO-ORDINATED SCIENCES


0654/33 Paper 3 (Extended Theory), maximum raw mark 120

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2014 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

P	age 2	2		Syllabus	Paper
			Cambridge IGCSE – October/November 2014	0654	33
1	(a)	ada sur	ation; ptation; vive; ection;		[4]
	(b)	(i)	(in 1980) no (significant) difference; (in 2010) higher in country A /ORA;		[2]
		(ii)	<u>mutation</u> produces resistant variety;		
			some bacteria more resistant than others/some bacteria are resistantibiotics in (frequent) use; resistant bacteria more likely to survive/natural selection/ORA; and reproduce to pass on this resistance;	ant ;	[max 3]
		(iii)	more/incorrect antibiotic use in country A/ORA;		[1]
					[Total: 10]
2	(a)	(i)	3000 (W) shown ; $= \frac{3000}{250} \text{ (= 12 A) ;}$		[2]
		(ii)	(resistance =) $\frac{\text{voltage}}{\text{current}}$; $\frac{250}{12}$ = 20.8 or 21;		
			Ω ;		[3]
	(b)	(i)	(larger current so) wire moves (upwards) higher/quicker/with more	force;	[1]
		(ii)	(current reversed so) wire moves downwards/direction reverses/fo downwards;	rce acts	[1]
					[Total: 7]
3	(a)	(i)	1(%);		[1]
		(ii)	any noble gas ;		[1]
	(b)	(i)	$24\mathrm{dm}^3$;		[1]
		(ii)	reference to the idea that 1 mole of <u>any</u> gas at room temperature are pressure has a volume of 24 dm ³ /1 mole of any gas under same conoccupies the same volume;		[1]
		(iii)	nitrogen has lower/different mass/lower density;		[1]

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – October/November 2014	0654	33

(c) (i) <u>fractional distillation</u>;

[1]

(ii) hydrocarbon/named alkane/petroleum/water;

[1]

(iii) $1000 \div 17 = 58.8(24) \text{ or } 59;$ $58.8 \div 2 = 29.4(12);$ $M_r N_2 = 28;$ $29.4 \times 28 = 823.2g \text{ (unit required)};$

[4]

[Total: 11]

4 (a) (i) (positive acceleration: driving force is greater than air resistance **OR** negative acceleration: driving force is less than air resistance) there is a resultant/net force/sum of forces is not zero;

[1]

(ii) (force =) mass \times acceleration; acceleration = 3.5 (m/s²); = 1200 \times (3.5) = 4200 (N);

[3]

(iii) (KE=) ½ mv²; initial KE=153600 and final KE=540000(J); difference=540000-153600=386400(J);

[max 3]

(b) mirror drawn at suitable angle;

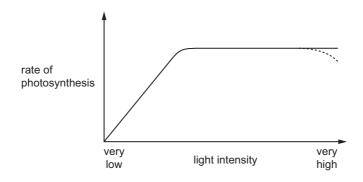
ray of light drawn from car **B** reflects off mirror to car **A** indicated by arrow; angles between rays and mirror approximately correct;

[3]

(c) engine vibration causes air particles to vibrate; energy/vibrations passed from particle to particle; compressions and rarefactions;

[max 2]

[Total: 12]


Page 4	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – October/November 2014	0654	33

5 (a) as an energy source; [1]

(b) oxygen; [1]

(c)
$$6CO_2 + 6H_2O \rightarrow C_6H_{12}O_6 + 6O_2$$
 formulae; balancing; [2]

(d) (i)

straight line for first part of graph ; levelling off at higher intensity ;

(ii) (at low) more light means more <u>energy</u> available/more light <u>energy</u> speeds up rate; (at very high) not enough CO₂/plant photosynthesising as fast as it

can/another limiting factor/<u>limiting factor</u>; [2]

(e) temperature;

CO₂ concentration;

wavelength/frequency/colour of light;

rainfall/water/humidity;

lack of magnesium; [max 2]

(f) (i) chlorophyll; [1]

(ii) to absorb the light/energy; [1]

[Total: 12]

[2]

Page 5	Page 5 Mark Scheme		Paper
	Cambridge IGCSE – October/November 2014	0654	33

6 (a)

element	physical state at 20 °C	colour	formula of molecules
chlorine	gas	(pale green)	C1 ₂
bromine	(liquid)	orange / brown	Br ₂
iodine	solid / crystals	dark grey / black	(I ₂)

,,,

(1 mark for each correct column)

[3]

(b) chlorine + sodium iodide \rightarrow iodine + sodium chloride;

[1]

(c) become ill/be poisoned/might die; because harmful microorganisms would not be killed;

[2]

[2]

(d) $2F_2 + 2H_2O \rightarrow O_2 + 4HF$ formulae; balanced;

[Total: 8]

7 (a) V = testis;

W = ovum/egg;

[2]

(b) fertilisation;

[1]

(c) at Y = mitosis; at Z = meiosis;

[2]

[2]

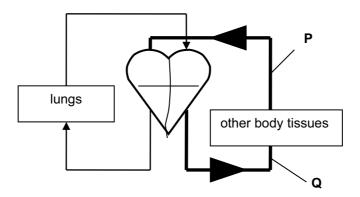
(d) W = 23; embryo = 46;

[Total: 7]

P	age t	•	Mark Scheme	Syllabus	Paper
			Cambridge IGCSE – October/November 2014	0654	33
8	(a)	(i)	68 (W);		[1]
		(ii)	working for A OR B ; A = 25% and B = 3.75%;		[2]
		(iii)	${f A}$ is more efficient than ${f B}/{\hbox{less energy consumed}}$; valid environmental statement e.g. less fossil fuels burned/non-renresources used/less ${\hbox{CO}}_2$ released ;	ewable	[2]
	(b)		lear ; etic ;		[2]
	(c)	(i)	time taken for half the atoms/nuclei to decay/time for radioactivity half;	to fall to	[1]
		(ii)	β particles and γ wave ; β more ionising ; β less penetrating ; β has charge and γ has no charge ; β has mass and γ has no mass ;		[max 2] [Total: 10]
9	(a)	(i)	with ethane no colour change/stays orange; with ethene orange solution becomes colourless;		[2]
		(ii)	x is 4; y is 8; alkenes;		[3]
	(b)	(i)	polymerisation ; addition (polymerisation) ;		[2]
		(ii)	poly(ethene);		[1]
		(iii)	carbon dioxide ; water ;		[2]
					[Total: 10]

Mark Scheme

Syllabus


Paper

Page 6

Page 7	Mark Scheme		Paper
	Cambridge IGCSE – October/November 2014	0654	33

10 (a) (i) X = pulmonary vein; Y = right atrium; [2]

(ii)

correct arrow on **P**; correct arrow on **Q**; [2]

- (iii) blood flows twice through the heart (for each complete circuit);through lungs, then through body tissues/v.v.;idea of separate oxygenated and deoxygenated blood;[max 2]
- (iv) blood has less far to travel/flows through fewer capillaries/organs;
 right (ventricle of) heart has less muscle;
 [max 1]
- (b) (i) artery; [1]
 - (ii) surge of blood/pressure into the vessel; vessel wall stretches (and recoils) with each beat; [max 1]
 - (iii) more <u>blood</u> to <u>muscles</u>;
 so more oxygen/glucose;
 removes more CO₂;
 increased respiration;
 increased energy released;
 [max 2]

[Total: 11]

11	(a)	(i)	poor (heat) conductor/idea of heat not passing through handle;	[1]
		(ii)	shiny/silver surface poor heat emitter;	[1]
	(b)	incr ene (in wat	base of saucepan) reased particle movement/vibration/kinetic energy; regy transferred by collision, vibration/energy, passed from particle to particle; water) reparticles move further apart; sedense water rises;	[4]
	(c)	(pre	essure =) $\frac{\text{force}}{\text{area}}$; $\frac{15}{100} = 0.05 (\text{N/cm}^2)$;	[2]
	(d)	$\frac{63}{(0.8)}$	$\frac{H}{m\theta}$ or $\frac{H}{m\Delta T}$; $\frac{3000}{5 \times 30)}$; $\frac{3000}{5 \times 30}$;	[3]
				Total: 11]
12	(a)	trar trar trar	nsition metals have high density; nsition metals (and compounds) can act as catalysts; nsition metals (often) form coloured compounds; nsition metals have high melting/boiling points; erence to variable oxidation states/valency;	[max 3]
	(b)	(i)	(26) same as proton number ;	[1]
		(ii)	3 ; same as Group number ; electrons arranged in 2,8,3 ;	[max 2]
	(c)	(i)	aluminium $\underline{\text{atom}}/\text{A}l$; becomes a positive ion; (aluminium atoms) lose electrons (when they ionise)/electron loss is oxidation/electrons transferred to iron (ions)/oilrig explained;	[max 3]

Mark Scheme

Cambridge IGCSE – October/November 2014

Page 8

Syllabus 0654 Paper 33

Page 9	age 9 Mark Scheme		Paper
	Cambridge IGCSE – October/November 2014	0654	33

(ii) less;

reaction is exothermic; chemical energy in reactants has been transferred to surroundings/changed to thermal energy (and so less in products);

[max 2]

[Total: 11]